If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0=-16t^2+150t+20
We move all terms to the left:
0-(-16t^2+150t+20)=0
We add all the numbers together, and all the variables
-(-16t^2+150t+20)=0
We get rid of parentheses
16t^2-150t-20=0
a = 16; b = -150; c = -20;
Δ = b2-4ac
Δ = -1502-4·16·(-20)
Δ = 23780
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{23780}=\sqrt{4*5945}=\sqrt{4}*\sqrt{5945}=2\sqrt{5945}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-150)-2\sqrt{5945}}{2*16}=\frac{150-2\sqrt{5945}}{32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-150)+2\sqrt{5945}}{2*16}=\frac{150+2\sqrt{5945}}{32} $
| 142=32-10x | | 3x+2-2x=x+3 | | 3k^2+17k+20=0 | | 1+1x=11+5x | | 6x-1=16-12x | | -3(x-3)=-2x+6 | | 4p=5(2p+3) | | 2-4x=-58 | | 5x-38=-2+14x | | 5/6=-3k | | X+3=1/2x-3 | | 7x+30+9x+4=104 | | 21x-14-13x=4(2x-4)+2 | | -7x+8x+4=16 | | 4n-9/3+1=10 | | 12x+6=x+11x | | 54-(4x+3)=4(x+6)+x | | 12c-15=9c+22 | | 26x-8-16x+4=24x-5-14x+17 | | 9k^2–19k+2=0 | | 5x+9-8x=13-13x+10x-4 | | 4/6y=8 | | x=180-97 | | x=66-180 | | 8b+21=15 | | x=90-73 | | 10w^2–13w+4=0 | | 7x-30+3x-26=180 | | 6T=a | | x*(6+x)=46 | | x+5x-6=x-14x+75 | | x-0.05x=7.10 |